[1,2] As we fix the supercell during all of the MD simulations, it is necessary to assess the effect of lattice distortion on structural stability. To guarantee the positive-definiteness of strain energy following lattice distortion, the linear elastic constants of a stable crystal has to obey the Born–Huang criteria[3]. We calculate the change of energy due to the in-plane strain to determine the mechanical stability of penta-graphene. For a 2D sheet, using the standard Voigt notation[4], i.e., 1-xx, 2-yy, and 6-xy, the elastic strain energy per unit area can be expressed as U(\varepsilon)=\frac{1}{2}C_{11}\varepsilon_{xx}^2+\frac{1}{2}C_{22}\varepsilon_{yy}^2+C_{12}\varepsilon_{xx}\varepsilon_{yy}+2C_{66}\varepsilon_{xy}^2 where C11, C22, C12, and C66 are components of the elastic modulus tensor, corresponding to second partial derivative of strain energy with respect to strain(If hexagonal structures: C_{11}=C_{22},C_{66}=1/2(C_{11}-C_{12}), If square: only C_{11}=C_{22})[4]).
For a mechanically stable 2D sheet[4], the elastic constants need to satisfy C11C22 − C122>0 and C66 > 0[3]. Due to the tetragonal symmetry of penta-graphene, we have C11 = C22. Thus, in this case we only need to satisfy C11>|C12| and C66 > 0. Under uniaxial strain, \varepsilon_{yy} = 0, U(\varepsilon)=1/2C_{11}\varepsilon_{xx}^2. Parabolic fitting of the uniaxial strain curve yields C11 = 265 GPa·nm. Under equi-biaxial strain, \varepsilon_{xx}= \varepsilon_{yy}, we have U(\varepsilon)=(C_{11}+C_{12})\varepsilon_{xx}^2. So Young’s modulus, which can be derived from the elastic constants by Y_{a}=(C_{11}*C_{22}-C_{12}^2)/C_{22},Y_{b}=(C_{11}*C_{22}-C_{12}^2)/C_{11}
\begin{pmatrix} \boldsymbol{a_1'} & \boldsymbol{a_2'} & \boldsymbol{a_3'} \end{pmatrix}=\begin{pmatrix} \boldsymbol{a_1} & \boldsymbol{a_2} & \boldsymbol{a_3} \end{pmatrix} \cdot (\boldsymbol{I}+\boldsymbol{\varepsilon}) \boldsymbol{\varepsilon}= \begin{pmatrix} e_1 & e_6/2 & e_5/2 \\ e_6/2 & e_2 & e_4/2 \\ e_5/2 & e_4/2 & e_3 \end{pmatrix}
e=(\delta,0,0,0,0,0) E(\delta)=E(0)+\frac{1}{2}C_{11}V_0\delta^2+O(\delta^4) \begin{pmatrix} \boldsymbol{a_1'} & \boldsymbol{a_2'} & \boldsymbol{a_3'} \end{pmatrix} =\begin{pmatrix} \boldsymbol{a_1} & \boldsymbol{a_2} & \boldsymbol{a_3} \end{pmatrix} \cdot \begin{pmatrix} 1+\delta & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}=\begin{pmatrix} (1+\delta) \boldsymbol{a_1} & \boldsymbol{a_2} & \boldsymbol{a_3} \end{pmatrix}
e=(0, \delta,0,0,0,0) E(\delta)=E(0)+\frac{1}{2}C_{22}V_0\delta^2+O(\delta^4) \begin{pmatrix} \boldsymbol{a_1'} & \boldsymbol{a_2'} & \boldsymbol{a_3'} \end{pmatrix} =\begin{pmatrix} \boldsymbol{a_1} & (1+\delta) \boldsymbol{a_2} & \boldsymbol{a_3} \end{pmatrix}
e=(\delta,\delta,0,0,0,0) E(\delta)=E(0)+\frac{1}{2}(C_{11}+C_{22}+2C_{12})V_0\delta^2+O(\delta^4) \begin{pmatrix} \boldsymbol{a_1'} & \boldsymbol{a_2'} & \boldsymbol{a_3'} \end{pmatrix} =\begin{pmatrix} \boldsymbol{a_1} & \boldsymbol{a_2} & \boldsymbol{a_3} \end{pmatrix} \cdot \begin{pmatrix} 1+\delta & 0 & 0 \\ 0 & 1+\delta & 0 \\ 0 & 0 & 1 \end{pmatrix}=\begin{pmatrix} (1+\delta) \boldsymbol{a_1} & (1+\delta) \boldsymbol{a_2} & \boldsymbol{a_3} \end{pmatrix}
u=[1-\delta^2]^{-1/3} e=(u(1+\delta)-1,u(1-\delta)-1,u-1,0,0,0) E(\delta)=E(0)+\frac{1}{2}(C_{11}+C_{22}+2C_{12})V_0\delta^2+O(\delta^4) \begin{pmatrix} \boldsymbol{a_1'} & \boldsymbol{a_2'} & \boldsymbol{a_3'} \end{pmatrix} =\begin{pmatrix} \boldsymbol{a_1} & \boldsymbol{a_2} & \boldsymbol{a_3} \end{pmatrix} \cdot \begin{pmatrix} u(1+\delta) & 0 & 0 \\ 0 & u(1-\delta) & 0 \\ 0 & 0 & u \end{pmatrix}=\begin{pmatrix} u(1+\delta) \boldsymbol{a_1} & u(1-\delta) \boldsymbol{a_2} & u\boldsymbol{a_3} \end{pmatrix}
e=(0,0,0,0,0,\delta) E(\delta)=E(0)+\frac{1}{2}C_{66}V_0\delta^2+O(\delta^4) \begin{pmatrix} \boldsymbol{a_1'} & \boldsymbol{a_2'} & \boldsymbol{a_3'} \end{pmatrix} =\begin{pmatrix} \boldsymbol{a_1} & \boldsymbol{a_2} & \boldsymbol{a_3} \end{pmatrix} \cdot \begin{pmatrix} 1 & \delta/2 & 0 \\ \delta/2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}=\begin{pmatrix} \boldsymbol{a_1}+\delta/2*\boldsymbol{a_2} & \boldsymbol{a_2}+\delta/2*\boldsymbol{a_1} & \boldsymbol{a_3} \end{pmatrix}
Table. Elastic constants (GPa) for graphene. Rec and hex stand for rectangular and hexagonal lattice.
Graphene | C_{11} | C_{22} | C_{12} | 1/2(C_{11}-C_{12}) | C_{66} |
---|---|---|---|---|---|
This work | 352.62 (Rec) | 352.25 (Rec) | 61.43 (Rec) | 145.59 (Rec) | 149.56 (Hex. +Relaxtion) |
Ref.[2] | 342.93 | 342.93 | 62.23 | 140.35 | — |
[7] another important measure of stiffness is so-called persistence length[31] lp (a correlation length for the direction of a tube exposed to equilibrium fluctuations at temperature T). Its magnitude is proportional to the tube stiffness, l_{p}=\pi Cd^3/8k_BT, and amounts to fraction of a millimeter at room temperature for the typical nanometer diameters.
radial breathing mode (RBM) frequency
f_{RBM}=(1/\pi{c}{d})/[(C/(1-\nu^2)\rho_s)^{1/2}] where \rho_s is the mass density of the sheet per unit area. (The speed of light c is to convert to spectroscopic cm-1 units.), d:nanotube diameters, \nu:Poisson ratio,C:in-plane stiffness