:D 获取中...

1

1.1 Free Energy Correction from Phonopy

The free energies for the allotropes were also evaluated using quasiharmonic approximation (QHA) method implemented in Phonopy program[1]. They were calculated from 0 to 1000 K at ambient pressure as follows,

F=U(V_0)+\frac{1}{2}\sum\limits_{\boldsymbol{q}\nu}\hbar\omega_{\boldsymbol{q}\nu}+k_BT\sum\limits_{\boldsymbol{q}\nu}\ln[1-\exp(-\hbar\omega_{\boldsymbol{q}\nu}/k_BT)] where U(V_0) is the ground state energy at the relaxed volume V_0, T is temperature, and \omega_{\boldsymbol{q}\nu} is the phonon frequency for the band \nu at wave vector \boldsymbol{q}.

1.2 Thermal Electron Contributions to Free Energy[2]

F_e(V,T)=E_e(V,T)-TS_e(V,T)

S_e(V,T)=-k_B\int n(\varepsilon,V)[fln f+(1-f)ln(1-f)]d\varepsilon

E_e(V,T)=\int n(\varepsilon,V)f\varepsilon d\varepsilon-\int^{\varepsilon_F}n(\varepsilon,V)\varepsilon d\varepsilon

, where n({\varepsilon,V}) is DOS, \varepsilon_F is Fermi level, and k_B is boltzmann constant (8.6173324E-5 eV/K), f=1/(e^{(\varepsilon-\varepsilon _F)/k_BT}+1) is the Fermi–Dirac distribution function.

ISMEAR = -1
SIGMA  = 0.025852  # 300K: 8.6173324E-5*300=0.025852, to use 10K as the reference

plot a curve between free energy change relative to the reference (TOTEN in OUTCAR) vs. temperature

  • 但是我发现使用上面公式的计算结果和VASP对不上,能对的上的公式应该是:

    F_e(V,T)=E_e(V,T)-TS_e(V,T)

    S_e(V,T)=-k_B\int n(\varepsilon,V)[fln f+(1-f)ln(1-f)]d\varepsilon

    E_e(V,T)=\int n(\varepsilon,V)f\varepsilon d\varepsilon-\int^{0}n(\varepsilon,V)\varepsilon d\varepsilon

    , where \varepsilon is the energy relative to Fermi Level E_F, k_B is boltzmann constant (8.6173324E-5 eV/K), n({\varepsilon,V}) is DOS, f=1/(e^{\varepsilon/k_BT}+1) is the Fermi–Dirac distribution function.

    使用这个公式的结果与VASP ISMEAR=-1的E_{el}, S_{el}F_{el} 严格相等。

[1]
Togo, A.; Oba, F.; Tanaka, I. First-Principles Calculations of the Ferroelastic Transition Between Rutile-Type and CaCl_2-Type SiO_2 at High Pressures. Phys. Rev. B 2008, 78, 134106.
[2]
Wolverton, C.; Zunger, A. First-Principles Theory of Short-Range Order, Electronic Excitations, and Spin Polarization in Ni-V and Pd-V Alloys. Phys. Rev. B 1995, 52, 8813–8828.